Global Optimization Strategies for Two-Mode Clustering∗
نویسندگان
چکیده
Two-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k -means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various methods may lead to non-global optima. This paper reviews and compares several optimization methods for two-mode clustering. Several known algorithms are discussed and a new, fuzzy algorithm is introduced. The meta-heuristics Multistart, Simulated Annealing, and Tabu Search are used in combination with these algorithms. The new, fuzzy algorithm is based on the fuzzy c-means algorithm of Bezdek (1981) and the Fuzzy Steps approach to avoid local minima of Heiser and Groenen (1997) and Groenen and Jajuga (2001). The performance of all methods is compared in a large simulation study. It is found that using a Multistart meta-heuristic in combination with a two-mode k -means algorithm or the fuzzy algorithm often gives the best results. Finally, an empirical data set is used to give a practical example of two-mode clustering.
منابع مشابه
Optimization Strategies for Two-Mode Partitioning
Two-mode partitioning is a relatively new form of clustering that clusters both rows and columns of a data matrix. In this paper, we consider deterministic twomode partitioning methods in which a criterion similar to k-means is optimized. A variety of optimization methods have been proposed for this type of problem. However, it is still unclear which method should be used, as various methods ma...
متن کاملGROUND MOTION CLUSTERING BY A HYBRID K-MEANS AND COLLIDING BODIES OPTIMIZATION
Stochastic nature of earthquake has raised a challenge for engineers to choose which record for their analyses. Clustering is offered as a solution for such a data mining problem to automatically distinguish between ground motion records based on similarities in the corresponding seismic attributes. The present work formulates an optimization problem to seek for the best clustering measures. In...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملTWO-STAGE METHOD FOR DAMAGE LOCALIZATION AND QUANTIFICATION IN HIGH-RISE SHEAR FRAMES BASED ON THE FIRST MODE SHAPE SLOPE
In this paper, a two-stage method for damage detection and estimation in tall shear frames is presented. This method is based on the first mode shape of a shear frame. We demonstrate that the first mode shape slope is very sensitive to the story stiffness. Thus, at the first stage, by using the grey system theory on the first mode shape slope, damage locations are identified in shear frames. Da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005